Maximal Neighborhood Search and Rigid Interval Graphs

نویسندگان

  • Peng Li
  • Yaokun Wu
چکیده

A rigid interval graph is an interval graph which has only one clique tree. In 2009, Panda and Das show that all connected unit interval graphs are rigid interval graphs. Generalizing the two classic graph search algorithms, Lexicographic Breadth-First Search (LBFS) and Maximum Cardinality Search (MCS), Corneil and Krueger propose in 2008 the so-called Maximal Neighborhood Search (MNS) and show that one sweep of MNS is enough to recognize chordal graphs. We develop the MNS properties of rigid interval graphs and characterize this graph class in several different ways. This allows us obtain several linear time multi-sweep MNS algorithms for recognizing rigid interval graphs and unit interval graphs, generalizing a corresponding 3-sweep LBFS algorithm for unit interval graph recognition designed by Corneil in 2004. For unit interval graphs, we even present a new linear time 2-sweep MNS certifying recognition algorithm. Submitted: September 2012 Reviewed: April 2013 Revised: May 2013 Accepted: May 2013 Final: May 2013

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal cliques structure for cocomparability graphs and applications

A cocomparability graph is a graph whose complement admits a transitive orientation. An interval graph is the intersection graph of a family of intervals on the real line. In this paper we investigate the relationships between interval and cocomparability graphs. This study is motivated by recent results [5, 13] that show that for some problems, the algorithm used on interval graphs can also be...

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph

We consider four conjectures related to the largest eigenvalue of (the adjacency matrix of) a graph (i.e., to the index of the graph). Three of them have been formulated after some experiments with the programming system AutoGraphiX (AGX), designed for finding extremal graphs with respect to given properties by the use of variable neighborhood search. The conjectures are related to the maximal ...

متن کامل

Efficient Neighborhood Encoding for Interval Graphs and Permutation Graphs and O(n) Breadth-First Search

In this paper we address the problem of designing O(n) space representations for permutation and interval graphs that provide the neighborhood of any vertex in O(d) time, where d is its degree. To that purpose, we introduce a new parameter, called linearity, that would solve the problem if bounded for the two classes. Surprisingly, we show that it is not. Nevertheless, we design representations...

متن کامل

Maximal outerplanar graphs as chordal graphs, path-neighborhood graphs, and triangle graphs

Maximal outerplanar graphs are characterized using three different classes of graphs. A path-neighborhood graph is a connected graph in which every neighborhood induces a path. The triangle graph T (G) has the triangles of the graph G as its vertices, two of these being adjacent whenever as triangles in G they share an edge. A graph is edge-triangular if every edge is in at least one triangle. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Graph Algorithms Appl.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2013